[bookmark: _Toc107119845]

Model 4100
Isolated High Power Stimulator

Matlab Interface Source Code

Revision 4.0

A-M Systems Model 4100 Matlab Interface Source Code	5

Table of Contents

Introduction	1
AMS_4100 communication protocol	2
Example Communication Files	6
GUI Communication Files	7
Example GUI	10

[bookmark: _Toc107119846][bookmark: _Toc377045658][bookmark: _Toc450125464][bookmark: _Toc88139673]
Introduction
A-M Systems Models 4100 stimulator functions are set with commands sent from the front panel or from a computer over Ethernet or USB. Computer communication over USB relies on drivers from FTDI that will automatically install if connected to the internet. Ethernet communication is done using the telnet protocol.

This document briefly describes the Matlab files written by A-M Systems, and is divided into four sections. The first section describes the AMS_4100 communication protocol and data structure. This is the basic communication structure used in the basic communication Example files and the GUI example. The second section describes the two example files and show how to set up basic communication with the instrument. The third section describes the two main communication files that the GUI uses to communicate with the instrument. The last section describes the example GUI (ams4100_GUI.m) and its many supporting m files.
[bookmark: _Toc377045659]

[bookmark: _Toc450125465][bookmark: _Toc88139674]AMS_4100 communication protocol
Introduction
Both transmit and receive protocols operate with commands which are a series of string “words” followed by a carriage-return 0x0d. Words are delimited by “whitespace” which is either 1 or more comma or blanks. If a word is one of the “reserved words defined in the table below, the stream just has to contain enough characters to uniquely specify it. For example, the word “get” can be specified by “g”, “ge” or “get”. Commands executed without error return an asterix (*) after the response if one is required. Commands with errors return a question mark (?)

All SET commands must be prefaced with the individual instruments pin number. This allows the instrument to have secure communication if necessary. This number solely defined on the instruments front panel. The pin can be set by navigating the Configuration page and selecting the network setup. The instrument will come with a default pin number of 1001.

Timing starts with the command “set active run”. Timing stops with the command “set active stop”. Any changed value will not take effect until timing is restarted (or if already stopped then started).

If amplitude values entered are above 50V then a “dangerous voltage” message will be sent to the computer with a set active start command and the program must respond with an OK.

Command Syntax
	1st Word
	2nd Word
	3rd Word
	4th Word
	5th Word
	Comments

	get
	revision
	
	
	
	Returns firmware revison

	
	active
	
	
	
	Returns the current status from this list: “Unknown”,
“Ready monitor”,
“Ready low output”,
“Ready HIGH OUTPUT”,
“Waiting for gate or Trigger”,
“Monitoring pulses”,
“Generating pulses”,
“MON. UNSAFE PULSES", or
“DANGEROUS PULSES”

	
	network
	
	
	
	Returns the IP address, IP Mask, and IP gateway

	
	menu
	menu #
	item #
	
	Returns the instrument setting for the specified menu # and item #.
Values are returned in signed 64 bit integers, representing uV, uA, or us.
For example -21V = -21,000,000

See Menu Tables Below.

	
	condition
	
	
	
	Returns two characters representing several instrument internal switches,
First character bits:
Bit 7 always =0, Bit 6 always =1, Bit 5 always=0,
Bit 4=1 if >200V,
Bit 3=1 if >100uA,
Bit 2=1 if FPGA is generating,
Bit 1=1 if the FPGA is loaded, waiting/generating
Bit 0=1 if the enable button is depressed.

Second Character bits:
Bit 7 always =0, Bit 6 always =1, Bit 5 always=0,
Bit 4=always 0
Bit 3=always 0
Bit 2=1 if the relay is open
Bit 1=1 if the Front panel is on free run
Bit 0=1 if the front panel has been changed

	
	
	
	
	
	

	PIN Set
	active
	run/stop
	
	
	Either starts or stops the generation of pulses.

	
	network
	IP address
	mask
	gateway
	String in "format" separated by "whitespace"

	
	display
	menu #
	
	
	Sets the LCD display on the front panel to the value of menu

	
	menu
	menu #
	item #
	value
	Sets the value of the item in menu to the value. Value is a 64 bit signed integer value in uV,uA, or us. Microseconds have only positive values.

	
	trigger
	none/ one/ free-run
	
	
	Generates an output trigger:
*free-run starts output without trigger,
*none cancels free-run and system waits for a
 hardware trigger
*one generates a single trigger

	
	Relay
	Open/ Close
	
	
	Opens or closes the relay on the output of the instrument.

Examples
Note: 	<CR> represents a carriage return (ascii hex 0x0d or decimal 13):
	<LF> represents a line feed (ascii hex 0x0a or decimal 10):
Get the firmware revision
	“get rev<CR>” 		or 		“g r<CR>”
	10The instrument will return
	“get rev<CR>M1_F1<CR><CR><LF>M1_F1<CR><LF>*<CR><LF>”

Get Event Type for Library 2
	“g m 11 2<CR>”
	The instrument will return:
	“g m 11 2<CR><CR><LF>1<CR><LF>*<CR><LF>”

Set Event Type to Ramp for Library 1 (assuming the PIN is ‘1001’)
	“1001 s m 10 2 3<CR>”
	The instrument will return:
	“1001 s m 10 2 3<CR><CR><LF>*<CR><LF>”
A-M Systems Model 4100 Matlab Interface Source Code	4

	Menu Name
	Menu #
	Item #
	Item Name
	Values

	General
	0
	0
	Mode
	0 = Int Volt
	1 = Int Current
	2 = Ext 20V/V
	3 = Ext 10 ma/V
	4 = Ext 1 ma/V
	5 = Ext 100 uA/V
	
	
	

	
	
	1
	Monitor
	0 = 0.1V/V
	1 = 1V/V
	2 = 10V/V
	3 = 20V/V
	4 = 10uA/V
	5 = 100uA/V
	6 = 1mA/V
	7=10mA/V
	

	
	
	2
	Trig
	0 = Rising
	1 = Falling
	
	
	
	
	
	
	

	
	
	3
	Auto
	0 = None
	1 = Count
	2 = Fill
	
	
	
	
	
	

	
	
	4
	Save
	Save the settings on the instrument
	
	
	
	
	
	

	
	
	5
	Output
	0 = On
	1 = Off
	(leaves the output enabled but at 0V or 0A)
	
	
	
	

	Configuration
	1
	0
	Rates
	0 = Period
	1 = Frequency
	
	
	
	
	
	
	

	
	
	1
	Sync1
	0 = TrainDel
	1 = TrainDur
	2 = EvDel
	3 = EvntDur1
	4 = EvntDur2
	5 = EvntDur3
	6 = EvntTotalDur
	7 = Clock-us
	8 = Clock_ms

	
	
	2
	Sync2
	0 = TrainDel
	1 = TrainDur
	2 = EvDel
	3 = EvntDur1
	4 = EvntDur2
	5 = EvntDur3
	6 = EvntTotalDur
	7 = Clock-us
	8 = Clock_ms

	UniformEvent
	4
	0
	Library #
	Integer value:
	1 to 20
	
	
	
	
	
	
	

	Train
	7
	0
	Type
	0 = Uniform
	1 = Mixed
	
	
	
	
	
	
	

	
	
	1
	Delay
	Time value 0 to 90,000,000,000us steps of 1us
	
	
	
	
	

	
	
	2
	Durat
	Time value 2 to 90,000,000,000us steps of 1us
	
	
	
	
	

	
	
	3
	Period
	Time value 2 to 90,000,000,000us steps of 1us
	
	
	
	
	

	
	
	4
	Number
	Quantity 0 to 99999 steps of 1
	
	
	
	
	
	

	
	
	5
	H/O
	0 = Hold
	1 = Offset
	
	
	
	
	
	
	

	
	
	6
	Level
	Amplitude value -200,000,000 to 200,000,000 steps of 1. 1uV or 1uA
	
	
	
	

	Event List
	8
	5
	Event 1
	Library number for corresponding Event 1 to 20 steps of 1
	
	
	
	
	
	

	
	
	6
	Event 2
	
	
	
	
	
	
	

	
	
	…
	…
	
	
	
	
	
	
	

	
	
	14
	Event 10
	
	
	
	
	
	
	

	
	
	23
	Event 11
	
	
	
	
	
	
	

	
	
	24
	Event 12
	
	
	
	
	
	
	

	
	
	…
	…
	
	
	
	
	
	
	

	
	
	32
	Event 20
	
	
	
	
	
	
	

	Library # 1-20
	10 to 30
	2
	Type
	0 = Mono
	1 = Biphase
	2 = Asym
	3 = Ramp
	
	
	
	
	

	
	
	3
	Delay
	Time value 0 to 90,000,000,000us steps of 1us
	
	
	
	
	

	
	
	4
	Number
	Quantity 0 to 99999 steps of 1
	
	
	
	
	

	
	
	5
	Period
	Time value 2 to 90,000,000,000us steps of 1us
	
	
	
	
	

	
	
	6
	Duration 1
	Time value 1 to 90,000,000,000us steps of 1us
	
	
	
	
	

	
	
	7
	Amplitude1
	Amplitude value -200,000,000 to 200,000,000 steps of 1. 1uV or 1uA
	
	
	
	

	
	
	8
	Interphase
	Time value 0 to 90,000,000,000us steps of 1us
	
	
	
	
	

	
	
	9
	Duration 2
	Time value 0 to 90,000,000,000us steps of 1us
	
	
	
	
	

	
	
	10
	Amplitude2
	Amplitude value -200,000,000 to 200,000,000 steps of 1. 1uV or 1uA
	
	
	
	

[bookmark: _Toc450125466][bookmark: _Toc88139675]Example Communication Files
EXAMPLE_1_USB.m
	This file goes through step by step instructions to send data to the instrument using a USB/Serial port connection from a computer running Matlab. The instrument must be turned and and connected via a USB cable to your computer running Matlab. The USB connection uses an FTDI driver that should be automatically installed when connected to your computer. Your can also download the USB Serial Converter driver files from ftdichip.com (VCP Drivers - FTDI (ftdichip.com))

EXAMPLE_1_Ethernet.m
This file goes through step by step instructions to send data to the instrument using an ethernet port connection from a computer running Matlab. Matlab needs to know how you set your IP address on the instrument, and the computer running Matlab need to be able to find that IP address, typically this is solved by putting the computer and instrument on the same network. The instrument does not use DHCP.

[bookmark: _Toc88139676]GUI Communication Files
ComConstants.m
	This file contains a structure of constants that define the instrument variable locations, and values that represent variable settings. For example to set the train type to mixed the string sent would be “set menu 7 0 1”. This is represented by:
 “PIN set menu constants.menu.train constants.train.type value.train.type.mixed”
ams4100_hClass.m
	This file is a handle class that has properties and get set functions for each instrument variable. There are also methods for starting/stopping the instrument and sending trigger values. The class needs to be instantiated with three input values.
1) a port to communicate with the instrument.
The port is a string that defines the serial port (‘COM’)
or an IP address (’10.0.0.80’).
2) The second value is the instruments PIN number set on the front panel.
The pin number defaults to 1001. If you choose a different pin number you need to include this variable
3) The third value is used for debugging, it defaults to TRUE, if it is set to FALSE then there will be no communication with the instrument, and no the error messages will be suppressed.
	Example: inst=ams4100_hClass('COM9',1001)
	ams4100_hClass with properties:

A-M Systems Model 3800 Matlab Interface Source Code	9

	DoComms:	1
	Active:	'Ready low output'
	Output:	'intVolt'
	Trigger:	'rising'
	Auto:	'none'
	Monitor:	'scale_1VperV'
	Sync1:	'eventDuration1'
	Sync2:	'eventDelay'
	PeriodOrFreq:	'period'
	TrainType:	'mixed'
	TrainDelay:	2
	TrainDur:	600000
	TrainPeriod:	1000000
	TrainQuantity:	1
	TrainLevel:	0
	TrainFrequency:	0
	OffsetOrHold:	'offset'
	EventID:	1
	LibID:	1
	EventType:	'ramp'
	EventDelay:	0
	EventDur1:	200000
	EventDur2:	200000
		EventDur3:	 200000
	EventPeriod:	1000000
	EventQuantity:	1
	EventFrequency:	0
	EventAmp1:	5000000
	EventAmp2:	-5000000
	EventList:	[3 2 1 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1]
	UniformNumber:	3
	HighVflag:	[0 1]
	HighIflag:	[0 0]
	Generating:	[0 0]
	Running:	[0 0]
	EnableButtonIn:	[0 0]
	PIN	1001
	PortSuccess:	1
	Revision:	'M1,F1'
	Network:	'10.0.0.80'
	SerialNumber:	'0'
	values:	[1x1 struct]
	loading:	0
	Port:	'COM9'
	PortInfo:	[1x1 serial]
	ActiveComms:	

Setting or getting a variable is done by using the instantiated class:
EX: >> inst.EventDur1
out=: g m 10 6 reply = g m 10 6~200000~*
ans =200000
EX: >> inst.EventDur3=10000;
out=: PIN s a stop reply = PIN s a stop~*
out=: PIN s m 10 9 10000 reply = PIN s m 10 9 10000~*
out=: PIN s a run reply = PIN s a run~*
As can be seen the command window will display the communication back and forth from the instrument.

To set values for a library position follow these steps:
1) Set the library number to the one to be changed :
inst.LibID=3; this will set the library to be changed to position 3
2) Set all the event parameters to the desired values:
inst.EventType= 3; 0 = Mono, 1 = Biphase, 2 = Asym, 3 = Ramp
inst.EventDelay: 0; in microsecond
inst EventDur1: 500; in microsecond
inst .EventDur2: 0; in microsecond
inst .EventDur3: 500; in microsecond
inst .EventPeriod: 2000; in microsecond
inst .EventQuantity: 1;
inst .EventAmp1: 12000000; in microvolts
inst .EventAmp2: -5000000; in microvolts

To view the values of any library positions follow these steps:
1) Set the library number to the one you want to view :
inst.LibID=1;
2) Then look at any event value:
inst .EventAmp1
“out=: g m 12 7 reply = g m 12 7~9000000~*
 ans =
 		9000000”
inst.LibID=3;
inst .EventAmp1
	“out=: g m 10 7 reply = g m 10 7~12000000~*
 ans =
 12000000”

To have outputs of more than one event type Train Type must be in ‘mixed’ mode and the EventList must have more than one defined library number.
1) Set TrainType
inst. TrainType=1;
2) Set the Event List to some pattern
Inst.EventList=[1 2 1 1 2];
If LibID 1 and 2 have been defined the output will have event 1 followed by 2 followed by 1 then 1 then 2.

To disable the output execute the command:
	Inst..Stop;
“out=: 1001 s a stop reply = 1001 s a stop~*”

To enable the output execute the command:
	Inst.Run;
“out=: 1001 s a run reply = 1001 s a run~* ~*”

To send the current configured Train output once execute the command:
	Inst. .GoOnce;
“out=: 1001 s t one reply = 1001 s t one~* “

To send the current configured Train output continuously execute the command:
	Inst. GoFreeRun
“out=: 1001 s t free reply = 1001 s t free~* “

To stop the continuously output execute the command:
	Inst. StopFreeRun
“out=: 1001 s t none reply = 1001 s t none~*”

To control the front panel enable Relay (timing continues) issue the command
	Inst. IsoOutput=0 ‘ the output relay is eneabled
“out=: 1001 s m 0 5 0 reply = 1001 s m 0 5 0~*”
	Inst. .IsoOutput=1 ‘ the output relay is disabled
“out=: 1001 s m 0 5 1 reply = 1001 s m 0 5 1~*”

[bookmark: _Toc450125467][bookmark: _Toc88139677]
Example GUI
The main file for the GUI is ams400_GUI.m. It MATLAB file that creates the Model 4100 user interface with no inputs or outputs to the function. This is just an example and should be considered a beta program.

Example:
[image:]

Required functions that must be in the same folder or in your MATLAB path.

CLASSES:
	ams4100_hClass.m - The class that communicates with the instrument
	ComConstants.m - The sturcture with that enumerates the constats.
	

FUNCTIONS:
	checkTimes.m - verifies AMS4100 time values are valid. Returns string error.
	controlsGUI.m - Cell of GUI cotrols, each row has Name, Label, and type
	defaultData.m - Fills the AMS4100 GUI with default data.
	DrawBiphasic.m - Draws the interactive Biphasic Event Graph
	DrawMonophasic.m - Draws the interactive Monophasic Event Graph
	DrawRamp.m - Draws the interactive Ramp Event Graph
	getOffsetAmps.m - Returns the pre-train, train, amp1 and amp2 values
					 based on the train event level and offset type.
	getTimeValues.m - Returns the event time values for the desired event.
	getValueNames.m - Generates a valid variable name based on the
					 comConstants stucture.
	IDnum.m - Processes changes to the EventID, LibID and EventList
				 uicontrols
	LoadWindow.m - Loads the window uicontrols with data from the instrument,
					or local Data if there is no instrument connection
	Plotit.m - Plots the time response for the events.
	processUserInput.m - takes a change to the uicontrol, and updates the
					 localData and sends info to the instrument.
	RetAmp1.m and RetAmp3.m - Given the graphical Y value of a line it
							returns the Event aplitude
	SetCom.m - Sets the serial port communication for the instrument
	SetTimeAMS.m - Takes the time values from the instrument and converts
					 it to a string for the uicontrols
	timeNum.m - Takes a uicontrol time value and makes sure it is in the
				 appropriate range
	trainNum.m - Takes a uicontrol train number and makes sure it is in the
				 appropriate range
	UpdateEvents.m - Updates the uicontrol event data when there is a
					 change to the libID, or EventID.

image1.png

